ESCALAS
La representación de objetos a su tamaño natural no es posible cuando éstos son muy grandes o cuando son muy pequeños. En el primer caso, porque requerirían formatos de dimensiones poco manejables y en el segundo, porque faltaría claridad en la definición de los mismos.
Esta problemática la resuelve la ESCALA, aplicando la ampliación o reducción necesarias en cada caso para que los objetos queden claramente representados en el plano del dibujo.
Se define la ESCALA como la relación entre la dimensión dibujada respecto de su dimensión real, esto es:
E = dibujo / realidad
Si el numerador de esta fracción es mayor que el denominador, se trata de una escala de ampliación, y será de reducción en caso contrario. La escala 1:1 corresponde a un objeto dibujado a su tamaño real (escala natural).
ESCALA GRAFICA
Basado en el Teorema de Thales se utiliza un sencillo método gráfico para aplicar una escala.
1º) Con origen en un punto O arbitrario se trazan dos rectas r y s formando un ángulo cualquiera.
2º) Sobre la recta r se sitúa el denominador de la escala (5 en este caso) y sobre la recta s el numerador (3 en este caso). Los extremos de dichos segmentos son A y B.
3º) Cualquier dimensión real situada sobre r será convertida en la del dibujo mediante una simple paralela a AB.
ESCALAS NORMALIZADAS
Aunque, en teoría, sea posible aplicar cualquier valor de escala, en la práctica se recomienda el uso de ciertos valores normalizados con objeto de facilitar la lectura de dimensiones mediante el uso de reglas o escalímetros.
Estos valores son:
Ampliación: 2:1, 5:1, 10:1, 20:1, 50:1 ...
Reducción: 1:2, 1:5, 1:10, 1:20, 1:50 ...
No obstante, en casos especiales (particularmente en construcción) se emplean ciertas escalas intermedias tales como:
1:25, 1:30, 1:40, etc...
EJEMPLO 1
Se desea representar en un formato A3 la planta de un edificio de 60 x 30 metros.
La escala más conveniente para este caso sería 1:200 que proporcionaría unas dimensiones de 30 x 15 cm, muy adecuadas al tamaño del formato.
EJEMPLO 2:
Se desea representar en un formato A4 una pieza de reloj de dimensiones 2 x 1 mm.
La escala adecuada sería 10:1
EJEMPLO 3:
Sobre una carta marina a E 1:50000 se mide una distancia de 7,5 cm entre dos islotes, ¿qué distancia real hay entre ambos?
Se resuelve con una sencilla regla de tres:
si 1 cm del dibujo son 50000 cm reales
7,5 cm del dibujo serán X cm reales
X = 7,5 x 50000 / 1 ... y esto da como resultado 375.000 cm, que equivalen a 3,75 km.
La representación de objetos a su tamaño natural no es posible cuando éstos son muy grandes o cuando son muy pequeños. En el primer caso, porque requerirían formatos de dimensiones poco manejables y en el segundo, porque faltaría claridad en la definición de los mismos.
Esta problemática la resuelve la ESCALA, aplicando la ampliación o reducción necesarias en cada caso para que los objetos queden claramente representados en el plano del dibujo.
Se define la ESCALA como la relación entre la dimensión dibujada respecto de su dimensión real, esto es:
E = dibujo / realidad
Si el numerador de esta fracción es mayor que el denominador, se trata de una escala de ampliación, y será de reducción en caso contrario. La escala 1:1 corresponde a un objeto dibujado a su tamaño real (escala natural).
ESCALA GRAFICA
Basado en el Teorema de Thales se utiliza un sencillo método gráfico para aplicar una escala.
1º) Con origen en un punto O arbitrario se trazan dos rectas r y s formando un ángulo cualquiera.
2º) Sobre la recta r se sitúa el denominador de la escala (5 en este caso) y sobre la recta s el numerador (3 en este caso). Los extremos de dichos segmentos son A y B.
3º) Cualquier dimensión real situada sobre r será convertida en la del dibujo mediante una simple paralela a AB.
ESCALAS NORMALIZADAS
Aunque, en teoría, sea posible aplicar cualquier valor de escala, en la práctica se recomienda el uso de ciertos valores normalizados con objeto de facilitar la lectura de dimensiones mediante el uso de reglas o escalímetros.
Estos valores son:
Ampliación: 2:1, 5:1, 10:1, 20:1, 50:1 ...
Reducción: 1:2, 1:5, 1:10, 1:20, 1:50 ...
No obstante, en casos especiales (particularmente en construcción) se emplean ciertas escalas intermedias tales como:
1:25, 1:30, 1:40, etc...
EJEMPLO 1
Se desea representar en un formato A3 la planta de un edificio de 60 x 30 metros.
La escala más conveniente para este caso sería 1:200 que proporcionaría unas dimensiones de 30 x 15 cm, muy adecuadas al tamaño del formato.
EJEMPLO 2:
Se desea representar en un formato A4 una pieza de reloj de dimensiones 2 x 1 mm.
La escala adecuada sería 10:1
EJEMPLO 3:
Sobre una carta marina a E 1:50000 se mide una distancia de 7,5 cm entre dos islotes, ¿qué distancia real hay entre ambos?
Se resuelve con una sencilla regla de tres:
si 1 cm del dibujo son 50000 cm reales
7,5 cm del dibujo serán X cm reales
X = 7,5 x 50000 / 1 ... y esto da como resultado 375.000 cm, que equivalen a 3,75 km.
No hay comentarios:
Publicar un comentario