Las fracciones se pueden clasificar de distintas formas; en la siguiente tabla se muestran las características de las más importantes.
Tipo | Características | Ejemplos |
Propia | El numerador es menor que el denominador | 1 / 2, 7 / 9 |
Impropia | El numerador es mayor que el denominador | 4 / 3, 5 / 2 |
Homogéneas | Tienen el mismo denominador | 2 / 5, 4 / 5 |
Heterogéneas | Tienen distinto denominador | 3 / 7, 2 / 8 |
Entera | El numerador es igual al denominador; representan un entero | 6 / 6 = 1 |
Equivalentes | Cuando tienen el mismo valor. Dos fracciones son equivalentes si son iguales sus productos cruzados | 2 / 3 y 4 / 6 2 x 6 = 3 x 4 |
Si en una fracción multiplicamos o dividimos el numerador y el denominador por un mismo numero, obtenemos una fracción equivalente a la primera, pues ambas tienen el mismo valor. Por ejemplo:
1 | (1 x 4) | 4 | 3 | (3 : 3) | 1 | |||||||||
— | = | ——— | = | — | = | 0,5 ; | — | = | ——— | = | — | = | 0,2 | |
2 | (2 x 4) | 8 | 15 | (15 : 3) | 5 |
Simplificar o Reducir una fracción consiste en hallar la fracción equivalente más pequeña posible; para ello, lo primero que hacemos es buscar el mayor número que divide exactamente (resto = 0) al numerador y al denominador (mayor divisor común) y después dividimos el numerador y el denominador por este mayor divisor común, ya que como hemos visto antes, dividiendo el numerador y el denominador de una fracción por un mismo número obtenemos una fracción equivalente (de igual valor).
Por ejemplo: Simplificar 30/42
Los números que dividen exactamente a 30 (divisores) son: 2, 3, 5, 6, 10 y 15.
Los números que dividen exactamente a 42 (divisores) son: 2, 3, 6, 7, 14 y 21.
Los divisores comunes a ambos son 2, 3 y 6. El mayor divisor común es 6, por tanto, dividimos numerador y denominador por 6.
30 | 30/6 | 5 | ||
—— | = | ——— | = | — |
42 | 42/6 | 7 |
Cuando en una fracción, el numerador y el denominador no tienen ningún divisor común, se dice que es una fracción irreducible.
no me gusto
ResponderEliminar